
Secure/Non-secure page redirector documentation
Budapest, June 16, 1999.

Peter Verhás

Introduction

This documentation describes a tool, which was developed during a consultation project by XXXX for
YYYY. Therefore the resulting software is a tool usable as it is and it is not a product of XXXX. This

means that the compiled binary together with the source was given to YYYY as knowledge without any
product guarantees.

YYYY extranet Web server, which is currently under development has secure and non
secure pages1. The web server handles all pages that pass secure data securely. The
secure and non-secure pages reference each other using relative URLs. This means that a
non-secure page referencing in a link presents an URL to the browser, which is non-secure.
On the other hand the web server serves the page only through secure channel. This
results an error response from the web server.

On the other hand: when a secure page references a non-secure page the non-secure
page will be handled via secure channel. This does not cause any error, but results slower
service consuming more resource. The web server serves the non-secure pages via secure
as well as non-secure web server.

The official Microsoft Knowledge Base article suggests using absolute URLs whenever a
secure/non-secure page link is needed. This is inconvenient. This prevents the developers
to test the application in a non-secure web server and redeployment of the pages on a
different server needs the alteration of all these absolute URLs because they contain the
machine name.

The solution is a tool in the form of an ISAPI filter. This automatically detects secure and
non-secure page requests and whenever the http request type differs from the type of the
page, it responds to the client browser with a redirect command targeting the same page
with the proper protocol (http or https).

Kit content
The installation kit contains the binary code of the program, documentation, source of the
program and sample files.

The files in the installation ki:

securedi.doc
debug.c
debug.h
registry.c
registry.h
securedi.c
securedi.def
securedi.dll
nsposta.asp
nstsget.asp
nstspost.asp
sposta.asp

Program documentation
Source C file
Source h file
Source C file
Source h file
Source C file
Source def file
Compiled binary
Test ASP page
Test ASP page
Test ASP page
Test ASP page

1 In this document we call a web page secure if the web server processes the page only
through secure channel. The web server in response to non-secure requests processes
non-secure pages. However non-secure pages are processed by the IIS web server in
response to secure requests as well.

stnsget.asp
stnspost.asp
rules.txt

Test ASP page
Test ASP page
Sample rule file

Installation

On the web server machine stop the IIS Admin Service using the Service Manager Control
Applet or issuing the command

net stop “IIS Admin Service” /yes

Copy the dll to the web server into a directory. Usually WINNT\System32\Inetsrv is a good
place.

Configure IIS to use this filter. You can do this using the Microsoft Management Console.
Select the Web server you want to use the filter and using the right mouse button select
the Web server properties.

On the property sheet select the ISAPI Filters tab and press the button add.

Specify a name for the filter that helps you later remember the function of the filter and
specify the full path to the DLL file. Press OK. The filter name appears in the filter list with
priority *Unknown*. Press OK again on the property sheet.

Edit the registry to define the configuration file and the debug information file. To this start
the registry editor from the start menu start the program regedit.

Create the key [HKEY_LOCAL_MACHINE\SOFTWARE\securedi 1.0] and create two string
values under this key pressing the right mouse button and selecting new string.

The names of the string values are “rules” and “debug”. The string value “rules” should
contain the file name of the file containing the secure pages. This file name should specify

the full path name including the drive letter and the directory. The file should be placed on
a local disk and the built-in user SYSTEM should be able to read it.

The string value “debug” should contain the name of the file that the filter will generate
listing its activities. This file name should contain the full path including the drive letter and
the directory.

Create the rules file using notepad. You can name it as you like, but since it contains text
data the obvious extension you may choose is txt. This file should contain all the URLs,
which are to be served secure. The URLs in the file should NOT contain the protocol and
the machine name, only the local virtual path and file name. The following URLs are valid
examples:

/myvirtual/directory/index.html
/index.html
/default.asp
/scripts/submit.pl

The following examples contain invalid lines:

http://www.mycom.com
myvirtual/directory/index.html
/myvirtual/*

Contains the protocol and the machine name
It does not contain the leading /
Wild characters are NOT allowed!

Start the web server using the Service Manager Control Applet starting the service World
Wide Web Publishing Service (usually this is the last service listed) or
Edit the registry and edit the configuration file. Start the web server using

the Service Manager Control Applet and starting the World Wide Web Publishing Service
(usually the last service listed), or issuing the command

net start “World Wide Web Publishing Service” /yes

Use your browser to request some pages and have a look at the generated debug file.
Check that the messages are correct.

Stop the web server again. Edit the registry specifying an empty debug file name. Start
the web server.

Whenever you change the rules file or change any of the two registry values listed above
you have to start and stop the web server using the Service Manager Control Applet or
issuing the commands:

net stop “IIS Admin Service” /yes
net start “World Wide Web Publishing Service” /yes

Configuration

The configuration of the program is done using the registry editor and notepad. The
registry entries the program uses are

[HKEY_LOCAL_MACHINE\SOFTWARE\securedi 1.0\rules]

and

[HKEY_LOCAL_MACHINE\SOFTWARE\securedi 1.0\debug]

The string value “rules” should specify the full path of the rule file. The string value
“debug” should specify the file name where the filter should print its debug information.
You can use the debug file to check the filter activities whenever the system behaves
erroneous. The filter writes its entire activity log into this file.

Note however that this feature is for trouble shooting purposes only. The debug file
generation is resource consuming and may severely impact system performance. Different
http serving threads under heavy load may result in garbled debug file. Use debugging
only in test environment testing the server with single client.

To switch off the debug file-creation delete the string value “debug” or specify an empty
name. After changing the registry value restart the web server.

Create the rules file using notepad. You can name it as you like, but since it contains text
data the obvious extension you may choose is txt. This file should contain all the URLs,
which are to be served secure. The URLs in the file should NOT contain the protocol and
the machine name, only the local virtual path and file name.

Whenever you change the rules file or change any of the two registry values listed above
you have to start and stop the web server using the Service Manager Control Applet or
issuing the commands:

net stop “IIS Admin Service” /yes
net start “World Wide Web Publishing Service” /yes

Note that the rule file may contain invalid lines without generating error. Any line which is
invalid consumes resource but does not generate any other malfunctions.

Checking and testing the configuration
Copy the six ASP files supplied in the kit to the virtual root directory of the web server.
Assume that the server name is www.mycompany.com. In this case the six test web pages will
have to URL:

http://www.mycompany.com/stnsget.asp
http://www. mycompany.com/nstsget.asp
http://www. mycompany.com/stnspost.asp
http://www. mycompany.com/nstspost.asp
http://www. mycompany.com/sposta.asp
http://www. mycompany.com/nsposta.asp

The characters of the names mean:

stns Secure to non-secure. The page is secure
and the form target is non-secure.

get The page contains a form and the method
of the form is GET.

post The page contains a form and the method
of the form is post.

sposta Secure page, post (and get) accept.
nsposta Non-secure page, post (and get) accept.

Start the Microsoft Management Console and change the security setting of the files
stnsget.asp, stnspost.asp and sposta.asp.

You can do this individually selecting each of the files, clicking the right mouse button,
selecting properties and pressing the “Edit” button in the middle frame titled “Secure
Communications”. After pressing this button you get the dialog above, where you have to
check the checkbox “Require Secure Channel when accessing this resource” as pointed by
the mouse in the picture above. You have to do this for all the three files. Be sure that this
check box is NOT checked for the files nstsget.asp, nstspost.asp and nsposta.asp.

You can do it only if you have installed some certificate on your server before. On the topic
how to install a certificate on the server see the documentation of the product Microsoft
Internet Information Server 4.0

After this setting the URLs of the pages become:

https://www. mycompany.com/stnsget.asp

http://www. mycompany.com/nstsget.asp
https://www. mycompany.com/stnspost.asp
http://www. mycompany.com/nstspost.asp
https://www. mycompany.com/sposta.asp
http://www. mycompany.com/nsposta.asp

The pages with name starting with the letter ‘s’ are secure pages and can be accessed via
secure channel. The other pages reference these pages using relative link in the href link
and in the form action fields. The same is true to other way around. The pages starting
with the letter ‘ns’ are non-secure pages and the secure pages reference them using
relative reference, and therefore not changing the channel from secure to non-secure r the
other way around.

Copy the content of the file rules.txt supplied in the installation kit into the configured
rules file. The rules file may contain other lines as well but be sure that the following lines
do NOT present in the rules file:

/nstsget.asp
/nstspost.asp
/nsposta.asp

as these file should be accessed via non-secure channel. This way the rules file tell the
filter that the files nstsget.asp, nstspost.asp and nsposta.asp are accessed via a secure
channel and the files nstsget.asp, nstspost.asp and nsposta.asp are accessed via normal,
non-secure channel.

Open the URL http://www.mycompany.com/nstspost.asp

Press the button “Press this key to get to post this to a secure page”. This will create a
POST http request to the URL http://www.mycompany.com/sposta.asp. The filter will see that
the result is to be secure and send back a redirect and thus finally the browser opens the
page http://www.mycompany.com/sposta.asp

Navigate through the pages and test the automated switching from secure to non-secure
pages and the other way around.

Note that POST operations do NOT work with some browsers when redirected from one
page to another. This is a functional limitation of the browsers. On the other hand this
limitation will prevent the web architect to generate insecure page links. See details in the
frame below.

When a form is included in a page, which is downloaded via normal http the result of the
form is sent to the web server via http without encryption in case the form action is
specified as a relative URL. Redirecting this POST http request to a secure page does not
increase security, because when the redirection of the request is performed the data is
already sent through the network in a non-secure form.

Therefore such a redirection even decreases the security because it makes the user feel
secure while they are not secure.

When a form is was downloaded securely and the resulting POST http request is redirected
to a non-secure page the browser asks the user whether to perform the operation. This is
a mandatory feature of most browsers, because the form was posted by the user to be
transmitted via secure channel, and posting via non-secure channel was requested after
the user already have pressed the submit button.

When designing secure and non-secure page transitions it should only be done
using href links and never following form actions.

The page showing the form of secure data should be transmitted securely using this filter.

How the program works
This filter checks all incoming connections and compares the URL against a table listing all
secure URLs. If the URL needs authentication and the connection is not secure it sends a
redirect to the secure page. If this is a secure channel, but it does not need a secure
connection it sends back a redirect to a non-secure page.

This ISAPI filter hooks itself into the PREPROC_HEADER point. This is the very first point
where a http request can be accessed by a filter. This filter hooks itself both for secure and
non-secure connections. This is done in the GetFilterVersion function.

BOOL WINAPI GetFilterVersion(HTTP_FILTER_VERSION * pVer){
 FILE *fp;
 char *s;
 int ch;
 int iCount;

 pVer->dwFilterVersion = HTTP_FILTER_REVISION;

 pVer->dwFlags = SF_NOTIFY_ORDER_LOW |
 SF_NOTIFY_SECURE_PORT |
 SF_NOTIFY_NONSECURE_PORT |
 SF_NOTIFY_PREPROC_HEADERS |
 0
 ;

 strcpy(pVer->lpszFilterDesc, "Securedi URL Filter 1.0");

.. //read config and return TRUE ...

The priority of the filter is low. The IIS Web server calls this function after starting itself
after the DLL is loaded. This function sets the appropriate parameters informing the web
server when to call the filter function and reads the configuration parameters from the
registry and from a text file.

The web server calls the function HttpFilterProc for each request it serves. The functions
retrieves the URL of the request using the call-back functions the web server supports and
decides if the page the URL is mapped to is secure or is non-secure. If the request type
does not match the page “secureness” then it sends a redirect to the client. The actual
code fragment that does this:

if(pfc->fIsSecurePort && ! fSecureUrl){
 // here we have to redirec to the same URL with non-secure port
 sprintf(szBuffer,"HTTP/1.0 301 Permanently moved\nLocation: http://%s%s\n\n",szServerName,szOriginalUrl);
 DebugMessage("Redirecting %s to %s",szUrl,szBuffer);
 cbBuffer = strlen(szBuffer);

 pfc->WriteClient(pfc,szBuffer,&cbBuffer,HSE_IO_SYNC);
 return SF_STATUS_REQ_FINISHED;
 }
 if(! pfc->fIsSecurePort && fSecureUrl){
 // here we have to redirect to the same URL with secure port
 sprintf(szBuffer,"HTTP/1.0 301 Permanently moved\nLocation: https://%s%s\n\n",szServerName,szOriginalUrl);
 DebugMessage("Redirecting %s to %s",szUrl,szBuffer);
 cbBuffer = strlen(szBuffer);
 pfc->WriteClient(pfc,szBuffer,&cbBuffer,HSE_IO_SYNC);
 return SF_STATUS_REQ_FINISHED;
 }

When the page is redirected the return value of the function is SF_STATUS_REQ_FINISHED
telling the web server that the request was fully served by the filter and the connection to
the client can be closed. If the page needs no redirection the filter is transparent and
returns SF_STATUS_REQ_NEXT_NOTIFICATION telling the server to process the request
further.

The redirection location is automatically created to include the protocol (http or https) and
to include the server name. The server name is created from the result of the function call
to GetServerVariable.

Compilation
To compile the program and to generate the binary executable you need a C language
compiler. During the consultation project we used Microsoft Visual C++ V6.0. This chapter
describes, how to compile the source code using this tool. The compilation process using a
different compiler may be different, but should be similar.

The source files are

• debug.c
• debug.h
• registry.c
• registry.h
• securedi.c
• securedi.def

The *.c file contain the source code, the *.h files contain definitions for the functions
implemented in the *.c files. The *.def file define the exported functions that the compiler
should put into the exported function table of the resulting DLL file.

Create a project using the Visual C++ V6.0 integrated development environment, telling
the compiler that you are generating an empty DLL project.

Using the right mouse button click on the project and select “Add Files to Project”.

Select the *.c, *h and the securedi.def files to add to the project. Select the Build menu,

and the Set Active Configuration sub menu. Select the release version of the project.

Compile the project pressing the key F7. The compiler generates the securedi.dll dynamic
load library.

Be sure that the securedi.def file was added to the project.

